In The Name OF God

Primary Reformer

Hampa Energy Engineering &
Design Company

www.hedcointl.com
Introduction

- Ammonia plants
- Methanol plants
- Hydrogen Plants
- Other plants

www.hedcoint.com
A Brief historical Review

- Greater capacity
 - 3300 mtpd 20 rows with a total of 960 tube
- Improve efficiency

Reformer section of a 3,300 mtpd Uhde ammonia plant

www.hedcoint.com
Reformer Types

- Top Fired
- Side Fired
- Terraced Wall

www.hedcoint.com
Design Parameters

- Function
- Feed
- Fuels
- Type
- Pressure
- Exit Temperature
- Inlet Temperature
- Steam/Carbon Ratio
- Heat Flux
- Pressure Drop
- Catalyst
- Tubes
- Burners
- Flow distribution
- Heat Recovery

www.hedcoint.com
Function

\[C_nH_m (g) + nH_2O + \text{heat} = nCO (g) + (m/2+n) H_2 (g) \] \hspace{1cm} (1)

\[CO (g) + H_2O (g) = CO_2 (g) + H_2 (g) + \text{heat} \] \hspace{1cm} (2)
Feed

- Natural gas
- Propane
- LPG
- Butane
- Naphtha

www.hedcoint.com
Fuels

- Natural gas
- Distillate fuels
Type : Top Fired

- The highest flue gas temperature when the intube process gas temperature is lowest
- The lowest flue gas temperature when the intube process gas temperature is highest
- Uniform tubewall temperature over the length of the tube
- Inherently stable furnace operation
Pressure

- The reforming reaction equilibrium is favored by low pressure
- The shift reaction equilibrium is independent of pressure
- Product hydrogen pressure requirement (down stream)

\[
C_nH_m (g) + nH_2O + heat = nCO (g) + (m/2+n) H_2 (g) \quad (1)
\]
\[
CO (g) + H_2O (g) = CO_2 (g) + H_2 (g) + heat \quad (2)
\]
Exit Temperature

- Lower temperatures give insufficient conversion
- Higher temperature increase metallurgical requirements
- Gas exit temperature typically runs between 800 to 900 °C
Inlet Temperature

- The reforming reaction rate becomes significant at about 540 °C
- Higher reformer inlet temperature decrease the number of tubes, the size of the furnace and fuel
- Higher reformer inlet temperature decrease the steam generation from WHR
- Metallurgical limits
- Optimum reformer inlet temperature 560 °C
Steam/Carbon Ratio

- Sufficient steam to eliminate carbon formation
- If proper catalyst is chosen, 3 steam to carbon ratio is applicable
Heat Flux

- A low heat flux provides extra catalyst volume and lower tubewall temperature.
- A high heat flux has the advantage of reducing the number of tubes.
- 20000 to 28000 Btu/hr-ft²
Pressure Drop

- Length of tubes
- Tube diameter
- Catalyst selection
- Approximately 3 Bar

www.hedcoint.com
Catalyst

- Reaction conversion
 - Nickel-alkali
 - shape
- Catalyst pressure drop
 - Shape

Key aspect of catalyst: formulation & shape
Tubes

- Temperature condition: 850 to 920°C
- Inside tube diameter: 4 to 5 in
 - Better heat transfer and cooler walls for lower ID
 - Higher pressure drop for lower ID
 - More required tubes for lower ID
- Tube length: 12 to 13 m
 - Longer tube reduces the flue gas exit temperature
 - Longer tube increases pressure drop
 - Longer tube decreases required tube
- Tube pitch: 2 to 3 tube diameter
- Lane spacing: 1.8 to 2.4 m

www.hedcoint.com
Burners

- Uniform heat release
- One burner for every 2.5 to 3.5 tubes is a good design practice
Flow distribution

- Symmetrical piping design
- Detailed pressure drop calculation
- Properly designed flue gas tunnel
- Properly fan design
Heat Recovery

- Inlet temperature of flue gas approximately 900°C
- Reformer mixed feed preheater, steam superheater, steam generation, boiler feedwater heater, feed heater, combustion air preheater
- Exit temperature of flue gas approximately 200 °C
Overall view
Forced fan
Air Preheater

www.hedcoint.com
Air ducts
Fuel
Radiant box
Convection box

www.hedcoint.com
Heat recovery
Induced fan and stack
Feed
Catalyst tubes
Tube supports

www.hedcoint.com
Radiant Section

- Considerations
 - Variation of heat demand from inlet to outlet
 - Uniformity of heat distribution along the length of the furnace
 - Uniformity of circumferential heat flux
 - Flow distribution in reactors for lowest turn down
 - Average and critical heat flux in the reformer firebox
- CFD modeling
Casing Design

- Design Temp 80 °C
- Designed for deflection to minimize refractory damage
- Needs to be an air tight construction
- Resistant to wind loads and other imposed loads
Reformer Tubes

- Creep
- Bending stress
- Thermal cycles
- Elongation

www.hedcoint.com
Reformer Tubes

- Tube material

- Tube Strength

www.hedcoint.com
Catalyst Development

- Control tube wall temperature
- Achieved the required conversion
- Have a low and stable pressure drop
- Avoid carbon formation
- Operation over a larger feed composition
Catalyst shape

- Activity
- Heat Transfer Coefficient
- Pressure Drop
Refractory

- Ceramic fiber
 - Module
 - Blanket
- Cast
- Brick
Transfer line

- Design Conditions
- Problems
 - Erosion
 - Pipe failure
 - Condensation
- Refractory
 - Design
 - Anchoring

www.hedcoint.com
Sample Reformer

Process Requirements:

(2050 TPD AMMONIA PRIMARY REFORMER)
• Process Gas
 • 174 ton/h
 • 520 °C
 • 39 Bar
• Super Heated Steam
 • 353 ton/h
 • 510 °C
 • 117 Bar
• Process Air Heater
 • 105 ton/h
 • 540 °C
 • 37 Bar

www.hedcoint.com
HEDCO
Specifications For:
2050 TPD AMMONIA PRIMARY REFORMER
• Catalyst Tubes
 • 48 tube @ 7 row
 • ID = 114.3
 • Effective Tube Length : 12.5 m
 • Inlet Temperature : 520
 • Outlet Temperature : 800
 • Design Temperature : 920
 • Max Wall Thickness : 890
 • Thickness : 12 mm
 • Design Pressure : 41 Bar
 • Max Pressure Drop : 3 Bar
 • Row Spacing : 2.1 m
Catalyst Tubes

<table>
<thead>
<tr>
<th></th>
<th>capacity</th>
<th>total tubes</th>
<th>row</th>
<th>tubes in row</th>
<th>riser</th>
<th>ID</th>
<th>Thk</th>
<th>Eff Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kellogg-Ghadir</td>
<td>187</td>
<td>336</td>
<td>6</td>
<td>56</td>
<td>6</td>
<td>110</td>
<td>12</td>
<td>11.8</td>
</tr>
<tr>
<td>Linde-Razi</td>
<td>132</td>
<td>235</td>
<td>5</td>
<td>47</td>
<td></td>
<td></td>
<td></td>
<td>10.9</td>
</tr>
<tr>
<td>Linde-Lordegan</td>
<td>174</td>
<td>336</td>
<td>7</td>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td>12.5</td>
</tr>
<tr>
<td>KTI-Shiraz</td>
<td>174</td>
<td>320</td>
<td>8</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td>12.6</td>
</tr>
<tr>
<td>HEDCO Design</td>
<td>174</td>
<td>336</td>
<td>8</td>
<td>42</td>
<td></td>
<td></td>
<td></td>
<td>12.5</td>
</tr>
</tbody>
</table>

www.hedcoint.com
Tube Wall Temperature

<table>
<thead>
<tr>
<th></th>
<th>Capacity</th>
<th>InTemp</th>
<th>Out Temp</th>
<th>Des Temp</th>
<th>Max Temp</th>
<th>ID Surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kellogg-Ghadir</td>
<td>187</td>
<td>620</td>
<td>812</td>
<td>924</td>
<td>889</td>
<td>1370</td>
</tr>
<tr>
<td>Linde-Razi</td>
<td>132</td>
<td>620</td>
<td>775</td>
<td>845</td>
<td>817</td>
<td>822.4</td>
</tr>
<tr>
<td>Linde-Lordegan</td>
<td>174</td>
<td>520</td>
<td>800</td>
<td>920</td>
<td>824</td>
<td>1507</td>
</tr>
<tr>
<td>KTI-Shiraz</td>
<td>174</td>
<td>520</td>
<td>800</td>
<td>914</td>
<td>889</td>
<td>1447.8</td>
</tr>
<tr>
<td>HEDCO Design</td>
<td>174</td>
<td>520</td>
<td>800</td>
<td>920</td>
<td>889</td>
<td>1507.4</td>
</tr>
</tbody>
</table>

www.hedcoint.com
• Burners
 • Arch Burners
 • Inner burners Number : 12 @ 7 row = 84
 • Inner burners Duty = 2 MV
 • Outer Burners Number: 12 @ 2 row = 24
 • Outer Burners Duty = 1.73
 • Tunnel Burners
 • Tunnel Burners Number = 8 @ 1 row
 • Tunnel Burners Duty = 0.53 MW
 • Auxiliary Burners
 • Auxiliary Burners Number : 10 @ 5 row
 • Auxiliary Burners Duty = 4.26 MW
Burners

<table>
<thead>
<tr>
<th></th>
<th>capacity</th>
<th>Arch burner</th>
<th>Auxiliary</th>
<th>Tunnel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>No</td>
<td>Duty</td>
<td>No</td>
</tr>
<tr>
<td>Kellogg-Ghadir</td>
<td>187</td>
<td>80/32</td>
<td>1.8/1.17</td>
<td>19</td>
</tr>
<tr>
<td>Linde-Razi</td>
<td>132</td>
<td>60/30</td>
<td>85/1.42</td>
<td>6</td>
</tr>
<tr>
<td>Linde-Lordegan</td>
<td>174</td>
<td>72/24</td>
<td>2.3/1.38</td>
<td>6</td>
</tr>
<tr>
<td>KTI-Shiraz</td>
<td>174</td>
<td>84/24</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>HEDCO Design</td>
<td>174</td>
<td>24/84</td>
<td>2/1.38</td>
<td>10</td>
</tr>
</tbody>
</table>

www.hedcoint.com
Thank You